Research Stories

2차원 소재‧소자의 양자역학적 상호 작용 규명

원자 단위 두께를 갖는 소재들로 구성된 수직 적층 구조 소자에서는, 다양하게 쌓인 원자 층 및 소자 동작에 따라 새로운 양자역학적 물성이 발현될 수 있음을 규명하고, 이를 초절전 양자터널링 트랜지스터 개발에 활용

에너지과학과 양희준 교수 · Shoujun Zheng 박사

  • 2차원 소재‧소자의 양자역학적 상호 작용 규명
  • 2차원 소재‧소자의 양자역학적 상호 작용 규명
Scroll Down


에너지과학과 양희준 교수와 Shoujun Zheng 박사는 2차원 적층 소재에 존재하는 슈타르크 효과 (Stark effect)를 활용하여 양자역학적 밴드갭 제어 및 초절전 트랜지스터를 개발했다고 밝혔다.


미래 소자의 핵심적인 역할을 담당할 2차원 소자 연구에서 수직 적층 구조의 터널링 소자가 큰 관심을 끌고 있다. 2차원 수직 터널링 소자는 기존 실리콘 반도체 소자보다 100배 이상 에너지 소모가 적고, 100배 이상 빠른, 초고속, 초절전 소자의 잠재력을 가지고 있다. 하지만, 열 에너지, 전자 에너지 등 외부 환경이 효율적인 터널링 (공명터널링) 소자 개발을 어렵게 한다는 난제가 남아 있었다. 본 연구에서는 원자 단위 크기에서 발현되는 양자역학적 슈타르크 효과 (Stark Effect)를 활용하여 이와 같은 난제를 해결하고, 정교한 밴드갭 제어 및 공명터널링 기반 트랜지스터를 개발할 수 있었다.


본 연구에 적용된 핵심적인 원리인 슈타르크 효과(Stark effect)는 1914년 요하네스 슈타르크에 의해 보고된 후 1919년 노벨물리학상을 받았으나, 지금까지 전기적 방법으로 소자 단위에서 측정 및 규명된 바 없었다. 본 연구는 슈타르크 효과가 크게 발현될 수 있는 2차원 적층 구조에서 전기적 방법으로, 직접 슈타르크 효과를 관측 및 활용한 최초의 연구라는 기초과학적인 의미가 있다.


또한, 응집 물리학에서 주요하게 연구되는 포논, 엑시톤 등 여러 준입자들의 영향을 변인통제, 제어하며, 상온에서 0.01 전자볼트 수준의 정확도를 갖는 전자의 에너지 분포를 활용하여 차세대 미래 전자 소자를 개발할 수 있는 방법을 제시하였다.


양희준 교수는 “기존 반도체 소자의 핵심인 전계효과트랜지스터를 대체할 수 있는 새로운 터널링 트랜지스터의 개발” 이라고 말하며, “이번 연구는 차세대 수직 소자 개발을 위한 정확한 물성 측정 및 설계 방법을 제시한 독창적인 연구 성과” 라고 밝혔다.


이 성과는 국제학술지 ’Advanced Materials (IF=25.809)’에 2020년 2월 6일에 게재되었다.


이 연구는 삼성미래기술육성사업의 지원으로 수행되었으며, 박사후연구원 Dr. Shoujun Zheng (에너지과학과)이 제 1저자로 참여하였다.


(그림) 2차원 소재 기반 공명 터널링 트랜지스터와 전자 밴드 구조 모식도






COPYRIGHT ⓒ 2017 SUNGKYUNKWAN UNIVERSITY ALL RIGHTS RESERVED. Contact us