Research Stories

Enhanced cancer immunotherapy via controlling immunosuppressive factors with nanotherapeutic platform (AIMS)

Chemo-immunotherapy increases immunosuppressive factors in the tumor microenvironment and lymph node, and controlling that immunosuppression via nanotherapeutic platform enhanced the therapeutic efficacy of cancer immunotherapy.

SKKU Advanced Institute of Nano Technology
Prof. LIM, YONGTAIK
Researcher Seung Mo Jin/Sang Nam Lee

  • Enhanced cancer immunotherapy via controlling immunosuppressive factors with nanotherapeutic platform (AIMS)
  • Enhanced cancer immunotherapy via controlling immunosuppressive factors with nanotherapeutic platform (AIMS)
Scroll Down

The research team of Prof. Yong Taik Lim (SKKU Advanced Institute of Nanotechnology, SAINT) developed nanotherapeutic platform(AIMS; Assemblable Immune Modulating Suspension) that can control the immunosuppressive factors in tumor microenvironment (TME) and showed that it can overcome the chemo-immunotherapeutic induced immune tolerance. They focused on the fact that chemo-immunotherapy increases the expression of representative immunosuppressive factor, IDO (Indoleamine-2,3-Dioxygenase) in tumor microenvironment and lymph node, and IDO drawbacks the therapeutic efficacy and induces immune tolerance. To overcome this limitation, researchers included the immunosuppressive reliever to vaccine component (antigen and adjuvant) and developed as a nanotherapeutic platform (AIMS), first in the world. In vivo results indicate that AIMS not only increases the proliferation and polarization of antigen-specific T cells, but also relieves the immunosuppressive cells (MDSC and Treg) and immunosuppressive cytokines(TGF-beta and IL-10) which hamper T cell functionality. Another advantage ofAIMS is that it lowers the systemic toxicity. This is possible because it induces sustain release of loaded drugs (chemotherapeutic agent, adjuvant, and immunosuppressive reliever) and localizes those drugs in the injection site. Byusing AIMS, the kinds and doses of encapsulated drugs can be easily adjustedand can be long-term storage as lyophilized form. This new platform is expected to be developed as a personalized medicine for cancer immunotherapy in the future.


Especially, it is notable that the research conducted during the master course of the first authors (Seung Mo Jin and Sang Nam Lee) was published in the world’s leading multidisciplinary science journal ‘Advanced Science’ in August 7th, 2021.




First authors of this research (Seung Mo Jin and SangNam Lee) have also published world’s leading chemistry journal ‘Accounts of Chemical Research’ (IF=22.384) in 2020 with Prof. Yong Taik Lim by introducing the materials for cancer immunotherapy.

 

Paper Title: Overcoming Chemoimmunotherapy-Induced Immunosuppression by Assemblable and Depot Forming Immune Modulating Nanosuspension (Advanced Science (IF=16.806), August 7, 2021)

 

Author: Seung Mo Jin (first author, Ph.D. course),Sang Nam Lee (first author, Master/Ph.D. integrated course), Yeon Jeong Yoo(co-author, Master course), Hong Sik Shin (co-author, Master/Ph.D. integratedcourse), Chang Hoon Lee (co-author, Master/Ph.D. integrated course), Soong HoUm (co-author, Professor), Yong Taik Lim (corresponding author, professor)

COPYRIGHT ⓒ 2017 SUNGKYUNKWAN UNIVERSITY ALL RIGHTS RESERVED. Contact us