Research Stories

Cheaper and Easier Synthesis of Drugs that are Widely Used in Anticancer & Antibiotics Medicines

Developed Cheaper and Easier Synthesis of Drugs Used in the Manufacturing of Anticancer Medicines, Antibiotics, and Other Substances

Prof. KIM, IN SU

  • Cheaper and Easier Synthesis of Drugs that are Widely Used in Anticancer & Antibiotics Medicines
  • Cheaper and Easier Synthesis of Drugs that are Widely Used in Anticancer & Antibiotics Medicines
Scroll Down

A research result on cheaper and easier synthesis of main ingredients for drugs that are widely used in the manufacturing of anticancer medicines and antibiotics has been released.

On Sep 6, Sungkyunkwan University announced that the research team of prof. In Su KIM from the School of Pharmacy has discovered a cheaper and easier method for producing pyridine and quinoline compounds, which are considered to be the all-round multifunctional medicines, by using a new reaction process.

So far, Wittig reaction that was developed in 1952 by Prof. WITTIG was widely used in synthesizing of organic chemistry or drug manufacturing field, but it was only limited for generation of the carbon-carbon double bond through reaction with carbonyl, and it had relatively lower chemical reactivity and required a complex process that goes through a number of steps. Although there is a different method using expensive transitional metals such as palladium or rhodium, it is inefficient because an additional process is required for removing metals.

The newly developed ‘Selective Alkylation of Pyridine and Quinoline’ by the research team uses direct alkylation reaction of the carbon-hydrogen bond present in pyridine and quinoline, instead of the traditional double bond formation reaction. The alkylation reaction breaking the carbon-hydrogen bond within a molecule allows easier and simpler synthesis of compounds that are used in various drugs, and this research result is a discovery of new reactivity by improving the existing problems of Wittig reagent.

According to the research team, this new technique uses a principle of natural reaction between two substances, which are oxygen and phosphorous. It is done by applying Wittig reagent to the oxygen-injected pyridine or quinoline and controlling the reaction conditions including temperature and concentration to draw out the optimized reaction so that the oxygen from the pyridine or quinoline reacts well with phosphorus present in the Wittig reagent.

As a research result that can suggest a new guideline to drug synthesis process, this discovery is published on the September issue of Angewandte Chemie (IF = 12.102), which is a world-class academic journal in the chemistry field. This research was conducted through the supports of Basic Research Laboratory (BRL) offered by the Ministry of Science and ICT and the National Research Foundation of Korea.